Title: | Omitted Variable Tool |
---|---|
Description: | This tool was designed to assess the sensitivity of research findings to omitted variables when estimating causal effects using propensity score (PS) weighting. This tool produces graphics and summary results that will enable a researcher to quantify the impact an omitted variable would have on their results. Burgette et al. (2021) describe the methodology behind the primary function in this package, ov_sim. The method is demonstrated in Griffin et al. (2020) <doi:10.1016/j.jsat.2020.108075>. |
Authors: | Lane Burgette [aut, cre], Joseph Pane [aut], Beth Ann Griffin [aut], Daniel McCaffrey [aut] |
Maintainer: | Lane Burgette <[email protected]> |
License: | GPL-3 |
Version: | 1.0.3 |
Built: | 2025-02-14 04:13:54 UTC |
Source: | https://github.com/cran/OVtool |
Plot of effect size contours with pvalue overlay
add_pvals_plot(prep, col = "color")
add_pvals_plot(prep, col = "color")
prep |
Input from prep_for_plots |
col |
If user wants color or black and white. Specify color with "color" or black and white "bw" |
a list of class gg and ggplot
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05) plot = add_pvals_plot(prep = prep)
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05) plot = add_pvals_plot(prep = prep)
This function will run additional simulations of the unobserved confounder and add the results to the object returned from the previous call to OVtool::ov_sim
add_reps(OVtool_results, model_results, more_reps)
add_reps(OVtool_results, model_results, more_reps)
OVtool_results |
The object returned from OVtool::ov_sim() |
model_results |
The object returned from OVtool::outcome_model() |
more_reps |
The number of additional repetitions the user wants to simulate the unobserved confounder |
add_reps returns an updated object returned from OVtool::ov_sim()
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0"), es_grid = .1, rho_grid = .1, n_reps = 2, progress=FALSE) additional = add_reps(OVtool_results = ovtool_results, model_results = outcome_mod, more_reps = 2)
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0"), es_grid = .1, rho_grid = .1, n_reps = 2, progress=FALSE) additional = add_reps(OVtool_results = ovtool_results, model_results = outcome_mod, more_reps = 2)
Plot of the effect size contours
es_plot(prep, col="bw")
es_plot(prep, col="bw")
prep |
Input from prep_for_plots |
col |
If user wants color (a heat map layered with contours) or black and white (contours only). Specify the heat map with "color" or black and white "bw". |
a list of class gg and ggplot
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05) plot = es_plot(prep = prep)
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05) plot = es_plot(prep = prep)
Plot of effect size contours with pvalue contours and observed covariate points overlayed
es_point_plot(prep, col = "color")
es_point_plot(prep, col = "color")
prep |
Input from prep_for_plots |
col |
If user wants color or black and white. Specify color with "color" or black and white "bw". |
a list of class gg and ggplot
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05) plot = es_point_plot(prep = prep)
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05) plot = es_point_plot(prep = prep)
Finds a reasonable effect size grid to simulate over.
find_esgrid(my_data, my_cov, treatment, outcome, my_estimand)
find_esgrid(my_data, my_cov, treatment, outcome, my_estimand)
my_data |
Data |
my_cov |
vector of covariates |
treatment |
column name of treatment indicator in my_data |
outcome |
column name of outcome in my_data |
my_estimand |
Relevant estimand ("ATE" or "ATT") |
a data frame with three columns, "Cor_Outcome", "es", and "cov". "Cor_Outcome" represents rho grid values, "ES" represents the range of grid values to represent the association between the unobserved confounder and the treatment indicator on the effect size scale, and "cov" is a vector of all the covariates used in the propensity score model
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") find_es = find_esgrid(sud, my_cov="sfs8p_0", treatment="treat", outcome="eps7p_3", my_estimand="ATE")
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") find_es = find_esgrid(sud, my_cov="sfs8p_0", treatment="treat", outcome="eps7p_3", my_estimand="ATE")
This function will generate a at finish.
gen_a_finish(a_res, my_estimand, wts)
gen_a_finish(a_res, my_estimand, wts)
a_res |
A list of values returned by gen_a_start |
my_estimand |
"ATE" or "ATT" |
wts |
A vector of the original weights |
a |
used to control the strength of the relationship between the omitted variable and the treatment |
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") start = gen_a_start(y=sud$eps7p_3, tx=sud$treat, residuals=residuals(outcome_mod$mod_results), es = .01, rho = .01, my_estimand = "ATE") finish = gen_a_finish(a_res = start, my_estimand = "ATE", wts = sud$wts)
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") start = gen_a_start(y=sud$eps7p_3, tx=sud$treat, residuals=residuals(outcome_mod$mod_results), es = .01, rho = .01, my_estimand = "ATE") finish = gen_a_finish(a_res = start, my_estimand = "ATE", wts = sud$wts)
This function is a wrapper to ov_simgrid. It generates the a. a is used to control the strength of the relationshp between the unobserved counfounder, U, and the treatment indicator
gen_a_start(y, tx, residuals, es, rho, my_estimand)
gen_a_start(y, tx, residuals, es, rho, my_estimand)
y |
A vector that represents the outcome. |
tx |
A vector for the treatment indicator (must be 0s and 1s). |
residuals |
A vector of residuals from regressing Y on X and controlling for treatment. |
es |
An effect size value to simulate over. |
rho |
A rho (correlation) value to simulate over. |
my_estimand |
"ATE" or "ATT" |
gen_a_start returns a list containing the following components:
n1 |
scalar representing sample size of treatment group (treat == 1) |
ve1 |
1 - b1^2 multiplied by the variance of Ystar1 |
b1 |
bounded parameter for treatment group (treat == 1) that it with b0 are selected to set the correlation of the omitted variable and the outcome equal to rho |
es |
|
pi |
proportion of population that is in the treatment group (treat == 1) |
n0 |
scalar represnting sample size of control group (treat == 0) |
ve0 |
1 - b0^2 multiplied by the variance of Ystar0 |
b0 |
bounded parameter for control group (treat == 0) that it with b1 are selected to set the correlation of the omitted variable and the outcome equal to rho |
n |
scalar representing the total sample size |
ind |
vector of positions in data that represent treatment group (treat == 1) |
Rstar_1 |
Residuals in treatment group |
Rstar_0 |
Residuals in control group |
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") start = gen_a_start(y=sud$eps7p_3, tx=sud$treat, residuals=residuals(outcome_mod$mod_results), es = .01, rho = .01, my_estimand = "ATE")
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") start = gen_a_start(y=sud$eps7p_3, tx=sud$treat, residuals=residuals(outcome_mod$mod_results), es = .01, rho = .01, my_estimand = "ATE")
This function will run the outcomes model for your analysis. Upon completeion, use the model object returned from this function and call ov_simgrid to check the sensitivity of your findings.
outcome_model(ps_object = NULL, stop.method=NULL, data, weights=NULL, treatment, outcome, model_covariates, estimand = "ATE")
outcome_model(ps_object = NULL, stop.method=NULL, data, weights=NULL, treatment, outcome, model_covariates, estimand = "ATE")
ps_object |
A ps object exported from TWANG |
stop.method |
If the user specifies ps_object, stop.method should be used to export the weights (e.g "ks.max") |
data |
A data frame containing the data |
weights |
A column name in data that represents the relevant weights |
treatment |
A column name in data for the treatment indicator |
outcome |
A column name in data indicating the outcome vector |
model_covariates |
A vector of column names representing the covariates in your final outcome's model |
estimand |
"ATE" or "ATT" |
outcome_model returns a list containing the following components:
ps_object |
The ps_object from TWANG specified in the function call. If ignored, this component will be NULL |
stop.method |
The stop method, if applicable, specified in the function call |
data |
the updated data frame |
weights |
the original vector of weights |
tx |
a character name in data indicating the treatment indicator |
y |
a character name in data indicating the outcome |
outcome_mod_fmla |
the final outcome model formula |
estimand |
The estimand specified in the function call |
mod_results |
an object of class "svyglm" |
Lumley T (2020). “survey: analysis of complex survey samples.” R package version 4.0.
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE")
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE")
This function will create the simulation grid. The simulation will iterate over effects sizes and absolute correlations with the outcome (rho) and see how the treatment effect and relevant p-value changes
ov_sim(model_results, plot_covariates, es_grid = seq(-.4, .4, by = 0.05), rho_grid = seq(0, .4, by = 0.05), n_reps = 50, progress = TRUE, add = FALSE, sim_archive = NULL)
ov_sim(model_results, plot_covariates, es_grid = seq(-.4, .4, by = 0.05), rho_grid = seq(0, .4, by = 0.05), n_reps = 50, progress = TRUE, add = FALSE, sim_archive = NULL)
model_results |
object returned from outcome_model |
plot_covariates |
vector of column names representing the covariates that will be plotted on the graphic as observed covariates. Most users will include the variables on the right-hand side of the propensity score model |
es_grid |
Not required. A grid of effect sizes to simulate over |
rho_grid |
Not required. A grid of correlations to simulate over; rho relates the correlation to the effect size. |
n_reps |
Number of repetitions to simulate over |
progress |
Whether or not the function progress should print to screen. The default value is TRUE. If the user does not want the output to print to screen, they should set to FALSE. |
add |
Default is FALSE. This is set to true if the user is running additional repetitions after the first call to ov_sim |
sim_archive |
Default is NULL |
ov_sim returns a list containing the following components:
p_val |
matrix of pvalues for each grid point |
trt_effect |
matrix of effect sizes for each grid point |
es_grid |
vector of the effect size grid |
rho_grid |
vector of the rho grid |
cov |
vector of covariates used to estimate propensity score weights |
data |
the initial data frame containing data with new weights |
tx |
column name in data representing the treatment indicator |
y |
column name in data representing the outcome |
estimand |
estimand used |
n_reps |
number of repetitions to simulate over |
std.error |
matrix of standard errors for each grid point |
es_se_raw |
matrix that stores each repetitions results at every grid point |
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0"), es_grid = NULL, rho_grid = NULL, n_reps = 2, progress=FALSE)
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_3", model_covariates = c("sfs8p_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0"), es_grid = NULL, rho_grid = NULL, n_reps = 2, progress=FALSE)
Plots the user specified graphic(s)
## S3 method for class 'ov' plot(x, col="color", print_graphic="1", p_contours = c(0.01, 0.05, 0.1), ...)
## S3 method for class 'ov' plot(x, col="color", print_graphic="1", p_contours = c(0.01, 0.05, 0.1), ...)
x |
Object returned from the call to ov_sim |
col |
If user wants color or black and white. Specify color with "color" or black and white "bw" |
print_graphic |
Takes values "1", "2", or "3", depending what graphics the user wants |
p_contours |
P-value countours to plot. The default plots: 0.01, 0.05, and 0.1. We only recommend changing this if the raw effect p-value is very close to one of these values. Do not specify more than four p-value contours. |
... |
Additional arguments. |
This function will print the plot to screen that the use specifies with print_graphic.
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) plot = plot.ov(ovtool_results, print_graphic="3", p_contours=.05)
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) plot = plot.ov(ovtool_results, print_graphic="3", p_contours=.05)
Data preparation for producing the graphics and summary results.
prep_for_plots(r1, p_contours)
prep_for_plots(r1, p_contours)
r1 |
An object returned from ov_sim |
p_contours |
P-value countours to plot. The default plots: 0.01, 0.05, and 0.1. We only recommend changing this if the raw effect p-value is very close to one of these values. Do not specify more than four p-value contours. |
prep_for_plots returns a list containing the following components:
r1 |
a list with the components returned from ov_simgrid |
r1_df |
a data frame with components used to create the contour graphic |
obs_cors |
a data frame with components used to plot the observed covariates on plot_graphic = "2" and plot_graphic = "3" |
text_high |
a character noting the covariates whose absolute correlation with the outcome is greater than the grid allows |
text_high_es |
a character noting the covariates with effect sizes greater than the maximum the plot will allow |
pvals |
a vector of p-value thresholds to be plotted on the graphics |
pval_lines |
a vector of line types to represent pvals |
raw |
a character with the raw effect and pvalue from the outcome model |
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05)
data(sud) sud = data.frame(sud[sample(1:nrow(sud),100),]) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0", "ada_0"), es_grid = 0, rho_grid = 0, n_reps = 2, progress=FALSE) prep = prep_for_plots(ovtool_results, p_contours=.05)
A dataset containing substance use disorder and mental health measures for adolescents who had one of two substance use treatments.
data("sud")
data("sud")
A data frame with 4000 observations on the following 29 variables.
treat
treatment indicator
tss_0
Traumatic Stress Scale, baseline
tss_3
Traumatic Stress Scale, recorded at 3-months
tss_6
Traumatic Stress Scale, recorded at 6-months
sfs8p_0
Substance Frequency Scale, baseline
sfs8p_3
Substance Frequency Scale, recorded at 3-months
sfs8p_6
Substance Frequency Scale, recorded at 6-months
eps7p_0
Emotional Problems Scale, baseline
eps7p_3
Emotional Problems Scale, recorded at 3-months
eps7p_6
Emotional Problems Scale, recorded at 6-months
ias5p_0
Illegal Activity Scale, baseline
dss9_0
Depressive Symptom Scale-9 Item, baseline
mhtrt_0
MH treatment, past 90 days, baseline
sati_0
Substance Abuse Tx Index, baseline
sp_sm_0
Substance Problem Scale, Past Month, baseline
sp_sm_3
Substance Problem Scale, Past Month, recorded at 3-months
sp_sm_6
Substance Problem Scale, Past Month, recorded at 6-months
gvs
General Victimization Scale
ers21_0
Environment Risk Scale, baseline
nproc
Count of Treatment A procedures delivered to client
ada_0
Adjusted Days Abstinent-Any, baseline
ada_3
Adjusted Days Abstinent-Any, recorded at 3-months
ada_6
Adjusted Days Abstinent-Any, recorded at 6-months
recov_0
Binary indicator indicating if in recovery, baseline
recov_3
Binary indicator indicating if in recovery, recorded at 3-months
recov_6
Binary indicator indicating if in recovery, recorded at 6-months
subsgrps_n
Categorical variable where: 1="Alcohol and/or marijuana disorder/weekly use; 2="Other drugs"; 3="Opiate disorder/weekly use"
sncnt
Total number of sessions for Treatment A
engage
Binary indicator indicating initiated treatment and had 4+ sesssions within 45 days for Treatment A
Global Appraisal of Individual Needs biopsychosocial assessment instrument - GAIN - Dennis, Titus et al. 2003
data(sud)
data(sud)
Produces summary information that contains a recommendation for reporting the sensitivity analyses
## S3 method for class 'ov' summary(object, model_results, sig_level = 0.05, progress = TRUE, ...)
## S3 method for class 'ov' summary(object, model_results, sig_level = 0.05, progress = TRUE, ...)
object |
The object returned from OVtool::ov_simgrid() |
model_results |
The object returned from OVtool::outcome_model() |
sig_level |
The alpha level with default 0.05 |
progress |
Whether or not the function progress should print to screen. The default value is TRUE. If the user does not want the output to print to screen, they should set to FALSE. |
... |
Additional arguments. |
This function will print a recommendation for reporting the sensitivity analyses.
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0"), es_grid = NULL, rho_grid = NULL, n_reps = 2, progress=FALSE) summary = summary.ov(object = ovtool_results, model_results = outcome_mod, sig_level=0.05, progress = FALSE)
data(sud) sud = data.frame(sud) sud$treat = ifelse(sud$treat == "A", 1, 0) sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE) outcome_mod = outcome_model(data = sud, weights = "wts", treatment = "treat", outcome = "eps7p_6", model_covariates = c("sfs8p_0", "eps7p_0"), estimand = "ATE") ovtool_results = ov_sim(model_results=outcome_mod, plot_covariates=c("sfs8p_0"), es_grid = NULL, rho_grid = NULL, n_reps = 2, progress=FALSE) summary = summary.ov(object = ovtool_results, model_results = outcome_mod, sig_level=0.05, progress = FALSE)